Solutions to Application Problems assigned in class (set 1) - *Revised* (I think they are correct now...)

1) Find the area between $\sin x$ and $\cos x$ (one "cell"):

$$\int_{-3\pi/4}^{\pi/4} (\cos[x] - \sin[x]) dx$$

$$2\sqrt{2}$$

2) Find the volume of a pyramid with an equilateral triangle base of side length 2 and height 6:

$$\int_0^6 \frac{\sqrt{3}}{4} \left(\frac{y}{3}\right)^2 dy$$
$$2\sqrt{3}$$

3) Find the volume of the solids of revolution:

a. between $y = x^2$ and $y = x^4$, about x = 7:

$$2\pi \int_{-1}^{1} (7 - x) (x^2 - x^4) dx$$

$$\frac{56 \pi}{}$$

$$\pi \int_{0}^{1} \left(\left(7 - \sqrt{y} \right)^{2} - \left(7 - \sqrt[4]{y} \right)^{2} \right) dy + \pi \int_{0}^{1} \left(\left(7 + \sqrt[4]{y} \right)^{2} - \left(7 + \sqrt{y} \right)^{2} \right) dy$$

$$\frac{56 \pi}{15}$$

between $y = x^3$ and y = 4x, about about y = b (I said y = 20 in the morning class and changed it to something else, which I don't remember, in the afternoon class; this formula is valid for any $b \ge 8$.

$$\pi \left(\int_{-2}^{0} \left((\mathbf{b} - 4 \mathbf{x})^{2} - (\mathbf{b} - \mathbf{x}^{3})^{2} \right) d\mathbf{x} + \int_{0}^{2} \left((\mathbf{b} - \mathbf{x}^{3})^{2} - (\mathbf{b} - 4 \mathbf{x})^{2} \right) d\mathbf{x} \right)$$

16 b π

$$2 \pi \left(\int_{-8}^{0} \left(\frac{y}{4} - \sqrt[3]{y} \right) (b - y) dy + \int_{0}^{8} \left(\sqrt[3]{y} - \frac{y}{4} \right) (b - y) dy \right)$$

c. between $y = \ln x$, y = 0, x = 2, about x = -3: (note: Log here means natural log here; you may approximate the integral numerically)

$$2\pi\int_{1}^{2} (x+3) \left(\text{Log}[x] \right) dx$$

11.2794

$$\pi \int_{0.}^{\text{Log}[2]} (25 - (e^{y} + 3)^{2}) dy$$

11.2794

- 4) Find work:
 - a. Roll up a 40 ft chain 1/4 of the way, with a 20 lb bucket on the end (chain weighs 2 lb/ft)

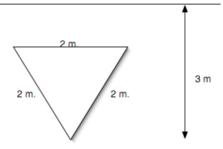
$$\int_{30}^{40} 2 (40 - y) dy + 10 (30) (2) + 10 (20)$$

900

b. Pump all the water out of a cone (with sharp end down) with radius 2 ft, height 8 ft

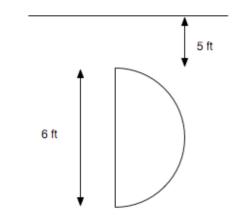
62.4
$$\pi \int_0^8 \left(\frac{y}{4}\right)^2 (8 - y) dy$$

4182.09


c. Pump half the water out of a sphere of radius 5 ft (assume sphere is full)

62.4
$$\pi \int_0^5 \left(\sqrt{25-y^2}\right)^2 (5-y) dy$$

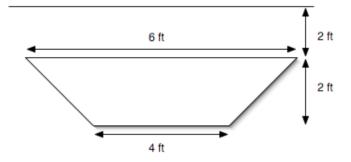
51050.9


5) Find the fluid force ("hydrostatic force"):

a.

9.8 (1000)
$$\int_0^{\sqrt{3}} (3-y) \left(\frac{2y}{\sqrt{3}}\right) dy$$

31322.3



62.4
$$\int_{-3}^{3} (8 - y) \sqrt{9 - y^2} dy$$

7057.27

b.

62.4
$$\int_0^2 (4 - y) \left(2 \left(\frac{y}{2}\right) + 4\right) dy$$

1830.4