First, let's define our curve:
![[Graphics:../Images/index_gr_2.gif]](../Images/index_gr_2.gif)
Our point of tangency:
![[Graphics:../Images/index_gr_3.gif]](../Images/index_gr_3.gif)
So, for a given Δx, the slope of the secant line is:
![[Graphics:../Images/index_gr_5.gif]](../Images/index_gr_5.gif)
This works great until , at which time bad things happen... So, a way to avoid this is to use the following trick:
![[Graphics:../Images/index_gr_7.gif]](../Images/index_gr_7.gif)
![[Graphics:../Images/index_gr_8.gif]](../Images/index_gr_8.gif)
Thus, the equation of the secant line is:
![[Graphics:../Images/index_gr_9.gif]](../Images/index_gr_9.gif)
![[Graphics:../Images/index_gr_10.gif]](../Images/index_gr_10.gif)
This gets the basic idea across, but it jumps around a lot. The way to fix this is to use the PlotRange option:
![[Graphics:../Images/index_gr_24.gif]](../Images/index_gr_24.gif)
Let's spice it up a little more with different colors:
![[Graphics:../Images/index_gr_38.gif]](../Images/index_gr_38.gif)
![[Graphics:../Images/index_gr_39.gif]](../Images/index_gr_39.gif)
Another cool trick is to plot all of these together on the same axes:
![[Graphics:../Images/index_gr_53.gif]](../Images/index_gr_53.gif)